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Many reactions of chemical and biochemical interest involve 
short-lived paramagnetic intermediates. Direct observation of EPR 
spectra of radicals and radical pairs that live only a few nano­
seconds is precluded by difficulties in instrumental response time.1 

The ability to directly measure magnetic parameters of fast radical 
reactions would prove very useful in elucidating both the structure 
of the radical intermediates and the mechanistic details of these 
reactions. We now report direct optical detection of magnetic 
resonance of the primary radical pair state in bacterial photo­
synthesis, PF, which possesses only a 15-ns lifetime. 

Photoexcitation of the reaction-center protein from purple 
photosynthetic bacteria results in rapid (<5 ps) formation of a 
radical pair, PF, composed of an oxidized bacteriochlorophyll a 
dimer (P+), and a reduced bacteriopheophytin a molecule (I").2 

If the endogenous quinone molecules in the protein are either 
removed or chemically reduced prior to excitation, PF lives for 
about 15 ns in the absence of an external magnetic field.3 During 
this time a fraction of the initially formed singlet population of 
PF, ' [ P T ] , is under the influence of local magnetic fields primarily 
due to nuclear hyperfine interactions in P+ and I". As a result 
PF undergoes radical pair intersystem crossing (RP ISC) to yield 
3[P+I -] . 

1 [P+I-] decays directly to the singlet ground state P, while 
3EP+I"] back-reacts to form 3P, which lives for microseconds before 
intersystem crossing back to ground-state singlet P. At zero 
magnetic field the ' [P+I-] and 3 [P+I-] states mix because they 
are nearly degenerate. Upon application of a strong magnetic 
field, the resultant T0 level of3 [P+I-] remains nearly degenerate 
with ' [P+I-].4 In general, both in the presence and in the absence 
of an external magnetic field the mixed radical pair states are at 
least slightly paramagnetic during most of the lifetime of PF. In 
order to determine the spatial arrangement of P and I that leads 
to efficient charge separation, it would be extremely useful to 
obtain a magnetic resonance spectrum of PF directly. In earlier 
work we approached this problem by monitoring the yield of 3P 
by using RYDMR.5 However, on the microsecond time scale 
many features of the spin dynamics of the radical pair are not 
observable. 

Reaction centers were isolated from the R-26 mutant of 
Rhodopseudomonas sphaeroides and depleted of endogenous 
quinones.3 A 80-100 /JM solution of reaction centers was placed 
in a standard EPR flat cell in a Varian optical transmission cavity 
centered between the poles of an electromagnet. The sample 
remained at ambient temperature (21 0C) throughout the ex­
periment. One-microsecond 9.4-GHz microwave pulses possessing 
powers up to 20 kW were provided by a magnetron source. The 
optical absorbance of the sample was monitored with 420-nm light 
from a flash lamp during the time following a 0.5-1.0-mJ 6-ns 
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Figure 1. Relative changes in optical density monitored at 420 nm as a 
function of time and magnetic field for R-26 reaction centers, quinone 
removed. The depicted changes are normalized relative to the observed 
absolute optical density change measured at 200 G for each time. 
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Figure 2. Magnetic resonance spectra of PF at 5 ns (—) and 200 ns (- - -) 
following the laser pulse; microwave power = 1 kW. Optical density 
changes at 420 nm are measured. The depicted changes are normalized 
relative to the observed absolute optical density change measured at each 
time off resonance. 

600-nm dye laser pulse. At 420 nm the optical absorbance of PF 

is about 7 times larger than that of 3P. Optical density changes 
were monitored as a function of time with a 2.5-ns fwhm response 
photomultiplier. The output of the photomultiplier was recorded 
with a Tektronix 7912AD digitizer. The entire optical observation 
was completed within the 1-̂ s microwave pulse, so that the sample 
was under constant microwave power during this time. Magnetic 
field sweep and data acquisition were under computer control. 

Figure 1 shows the time evolution of optical density changes 
at 420 nm as a function of both time and magnetic field. Im­
mediately following the laser pulse during the lifetime of PF the 
optical density change monitors the total PF concentration.3 The 
data show that the amount of PF surviving at a given time during 
its lifetime increases as the field increases. At longer times (>50 
ns) most of PF has decayed, and the optical density change at 420 
nm monitors 3P alone. In this time regime we observe a decrease 
in 3P optical density as has been obtained previously.6 These 
results are a consequence of the fact that application of a magnetic 
field splits the three triplet sublevels of3 [P+I -], leaving only T0 

nearly degenerate with ' [P+I -] . Thus, RP ISC to T+1 and T., 
is greatly slowed, resulting in a decrease in the population of 3P 
and an increase in the population of PF. 

Two states possessing only partial triplet character result from 
mixing ' [P+I-] and T0 in PF. In order to observe resonance in 
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PF, microwave transitions must occur between these mixed states 
and T+1 and T_i. This requires that a substantial H^ field be 
present during the lifetime of PF. In Figure 2 magnetic resonance 
spectra of PF are presented. The signal 200 ns after the laser pulse 
results from monitoring the 3P population, which increases upon 
application of 1-kW microwaves at resonance. However, 5 ns after 
the laser pulse we directly observe the resonance signal of PF. This 
signal shows that the PF population decreases upon application 
of resonant microwaves. Since resonant microwaves increase the 
amount of3 [P+I-] at the expense of ' [P + I" ] . t n e observed decrease 
in PF yield (the sum of '[P+I"] and 3 [P+I-] concentrations) at 
resonance shows that the decay rate of ' [P+I"] to ground state, 
ks, is significantly slower than that of 3 [P+I -], kT, to 3P. If ks 

> kj, then the PF yield would increase at resonance. Moreover, 
if ks = k7, no PF resonance would appear. It is important to note 
that the resonance observed by monitoring 3P 200 ns after the 
laser flash would appear regardless of whether ks > kT, kr > ks, 
or ks = kT. Appearance of this signal only requires that resonant 
microwaves increase the amount of 3 [P+I-] leading to 3P. 

Earlier experiments concerning magnetic field effects alone have 
concluded that ks is probably smaller than /cT.3,7 In addition, 
several quantum mechanical models of magnetic field effects on 
the yield of 3P have examined a wide variety of ks and kT values 
and have generally supported the notion that ks < kT} Within 
the constraints of the radical pair model our data demonstrate 
directly that ks < kT. In conclusion, the ability both to monitor 
and to control the dynamics of radical pair populations directly 
should prove very useful in determining structure and mechanism 
in electron-transfer reactions especially in important biological 
systems such as photosynthesis. 
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Recently we disclosed1 the titanium tetrachloride catalyzed 
coupling of some chiral acetals, e.g., Ia, with allyltrimethylsilane.2 

The products were formed diastereoselectively, and removal of 
the chiral auxiliary afforded optically active homoallylic alcohols, 
ee 65-74%. The coupling results (diastereomeric ratios up to 
88:12) are at least qualitatively consistent with the Bartlett model1 

for the transition state of a related, but more selective (ratio 92:8), 
intramolecular reaction.3 

As part of a program aimed at exploring the acetal reaction 
with various nucleophiles, we now report on the coupling with 
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(trimethylsilyl)acetylenic compounds.4 From these experiments 
a methodology has emerged for the highly enantioselective pro­
duction of secondary propargylic alcohols. In addition, this study 
promised to shed some light on whether the diastereoselectivity 
of the process is enhanced by the presence of a substituent (the 
trimethylsilyl group, in the present instance) located at the reacting 
site of the nucleophilic partner.5 

The couplings of the acetal 1 with the silylacetylenes 26 to give 
3 (Scheme I, Table I) were performed as described for the re­
actions with allyltrimethylsilane,1 except that with the (tri-
methylsilyl)propyne (2a) reactions (Table I, entries 1 and 3) a 

(4) Lewis acid catalyzed acylations and alkylations of silylacetylenes are 
well-known. See inter alia: Fleming, I. "Comprehensive Organic Chemistry", 
Barton, D. H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, 
p 613. Birkofer, L.; Ritter, A.; Uhlenbrauck, H. Chem. Ber. 1963, 96, 
3280-3288. 
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of 5,9-dimethyldeca-(5£')-9-dienal, the proposed effect being due to nonbonded 
interactions between the C-7 group and one of the chiral centers.3 
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